查看 iOS 中所有堆区对象
iOS 内存工具中 经常会有 查看某一个对象的所有引用者, 该对象实例化了多少等需求, 而实现这些需求, 首要的就是获取所有的堆区对象, 如何处理呢?
需求: 堆区对象的查找
寻找已有的开源项目实现 FLEX 中的 FLEXHeapEnumerator
FLEX 代码的参考
- https://llvm.org/svn/llvm-project/lldb/tags/RELEASE_34/final/examples/darwin/heap_find/heap/heap_find.cpp
- https://gist.github.com/samdmarshall/17f4e66b5e2e579fd396
FLEXHeapEnumerator
static CFMutableSetRef registeredClasses;
// Mimics the objective-c object structure for checking if a range of memory is an object.
typedef struct {
Class isa;
} flex_maybe_object_t;
@implementation FLEXHeapEnumerator
static void range_callback(task_t task, void *context, unsigned type, vm_range_t *ranges, unsigned rangeCount) {
if (!context) {
return;
}
for (unsigned int i = 0; i < rangeCount; i++) {
vm_range_t range = ranges[i];
flex_maybe_object_t *tryObject = (flex_maybe_object_t *)range.address;
Class tryClass = NULL;
// 这里 iOS 真机 arm64 为了优化 isa 的内存, 仅仅使用了一部分来表示指针, 剩余部分会表示比如引用计数, 使用 arc 之类的东西, 所以需要特殊处理来获取 tryClass
#ifdef __arm64__
// See http://www.sealiesoftware.com/blog/archive/2013/09/24/objc_explain_Non-pointer_isa.html
extern uint64_t objc_debug_isa_class_mask WEAK_IMPORT_ATTRIBUTE;
tryClass = (__bridge Class)((void *)((uint64_t)tryObject->isa & objc_debug_isa_class_mask));
#else
tryClass = tryObject->isa;
#endif
// If the class pointer matches one in our set of class pointers from the runtime, then we should have an object.
if (CFSetContainsValue(registeredClasses, (__bridge const void *)(tryClass))) {
(*(flex_object_enumeration_block_t __unsafe_unretained *)context)((__bridge id)tryObject, tryClass);
}
}
}
static kern_return_t reader(__unused task_t remote_task, vm_address_t remote_address, __unused vm_size_t size, void **local_memory) {
*local_memory = (void *)remote_address;
return KERN_SUCCESS;
}
/// 遍历堆区已分配的内存
/// @param block 回调
/// 疑问 ① 关于 lock 的使用中, enumerator 前后 和回调中 都进行了 加解锁 , 有些递归的效果, 该处代码能正确运行, 那应该是递归锁了
+ (void)enumerateLiveObjectsUsingBlock:(flex_object_enumeration_block_t)block {
if (!block) {
return;
}
// Refresh the class list on every call in case classes are added to the runtime.
// 获取最新的所有被注册到 runtime 中的对象 objc_copyClassList
[self updateRegisteredClasses];
// Inspired by:
// https://llvm.org/svn/llvm-project/lldb/tags/RELEASE_34/final/examples/darwin/heap_find/heap/heap_find.cpp
// https://gist.github.com/samdmarshall/17f4e66b5e2e579fd396
vm_address_t *zones = NULL;
unsigned int zoneCount = 0;
// 获取所有的堆区 malloc 内存空间 zones
// ② 定义 memory_reader_t 函数 -> reader , 与直接传 NULL 有什么区别
// typedef kern_return_t memory_reader_t(task_t remote_task, vm_address_t remote_address, vm_size_t size, void **local_memory);
// ③ 这里使用 TASK_NULL , 底层实现是如果处理的, 与 mach_task_self() 有什么区别
kern_return_t result = malloc_get_all_zones(TASK_NULL, reader, &zones, &zoneCount);
if (result == KERN_SUCCESS) {
for (unsigned int i = 0; i < zoneCount; i++) {
malloc_zone_t *zone = (malloc_zone_t *)zones[i];
// 内存空间 内省 返回的结构体中 包含了很多内存反射相关的函数: 比如 枚举内存,读取相关的安全锁
malloc_introspection_t *introspection = zone->introspect;
// This may explain why some zone functions are
// sometimes invalid; perhaps not all zones support them?
if (!introspection) {
continue;
}
void (*lock_zone)(malloc_zone_t *zone) = introspection->force_lock;
void (*unlock_zone)(malloc_zone_t *zone) = introspection->force_unlock;
// Callback has to unlock the zone so we freely allocate memory inside the given block
// !!!! 特别注意这里内部也进行了 加解锁, 看来是多次回调 多次加解锁, 不知道为什么这样操作
flex_object_enumeration_block_t callback = ^(__unsafe_unretained id object, __unsafe_unretained Class actualClass) {
unlock_zone(zone);
block(object, actualClass);
lock_zone(zone);
};
// 指针安全可读 ; 使用内存方面的底层指针 需要谨慎 ; 原因如下 NOTES
BOOL lockZoneValid = FLEXPointerIsReadable(lock_zone);
BOOL unlockZoneValid = FLEXPointerIsReadable(unlock_zone);
// NOTES: There is little documentation on when and why
// any of these function pointers might be NULL
// or garbage, so we resort to checking for NULL
// and whether the pointer is readable
if (introspection->enumerator && lockZoneValid && unlockZoneValid) {
// 锁定这块区间
lock_zone(zone);
// 遍历可读的内存 (allocated pointers 已分配的内存地址)
// 这里的 callBack 与 range_callback 的处理是对应的处理结果 息息相关的
introspection->enumerator(TASK_NULL, (void *)&callback, MALLOC_PTR_IN_USE_RANGE_TYPE, (vm_address_t)zone, reader, &range_callback);
// 解锁该区间
unlock_zone(zone);
}
}
}
}
// 查找最新的已注册 class ,并整理到 set 中
+ (void)updateRegisteredClasses {
if (!registeredClasses) {
registeredClasses = CFSetCreateMutable(NULL, 0, NULL);
} else {
CFSetRemoveAllValues(registeredClasses);
}
unsigned int count = 0;
Class *classes = objc_copyClassList(&count);
for (unsigned int i = 0; i < count; i++) {
CFSetAddValue(registeredClasses, (__bridge const void *)(classes[i]));
}
free(classes);
}
@end
疑问
锁
关于 lock 的使用中, enumerator 前后 和回调中 都进行了 加解锁, 这里要注意加解锁的顺序, 外部先锁定, 内部先解锁然后加锁 , 最后外部解锁
测试方式 多次解锁, 会出现如下崩溃
BUG IN CLIENT OF LIBPLATFORM: Unlock of an os_unfair_lock not owned by current thread
说明这是一个 os_unfair_lock 也就是如下对应
force_unlock => os_unfair_lock_unlock
force_lock => os_unfair_lock_lock
猜测这里在回调处多次加解锁是为了减少锁的粒度, 性能更好
memory_reader_t
malloc_get_all_zones 中 memory_reader_t 函数 使用自己定义的 reader 函数, 与直接传 NULL 有什么区别
task
malloc_get_all_zones 中使用 task 为 TASK_NULL, 与传 mach_task_self() 有什么分别
测试发现 基本没有差别, 但语义上 TASK_NULL应该是无效 task, mach_task_self 为调用线程的 task port 奇怪
mach_task_self 多了
__CFN_CoalescingDomainHolder
__CFN_PathPolicyManager
__NSCFURLSessionTaskActiveStreamDependencyInfo
少了 boringssl_concrete_boringssl_session_state
测试代码如下:
- (void)testExample {
// This is an example of a functional test case.
// Use XCTAssert and related functions to verify your tests produce the correct results.
printf("====begin==== \n");
NSMutableSet *set = [NSMutableSet set];
[FLEXHeapEnumerator enumerateLiveObjectsUsingBlock:^(__unsafe_unretained id object, __unsafe_unretained Class actualClass) {
NSString *clsName = NSStringFromClass(actualClass);
if (![set containsObject:clsName]) {
[set addObject:clsName];
}
}];
NSArray *ret = [set.allObjects sortedArrayUsingComparator:^NSComparisonResult(NSString * obj1, NSString * obj2) {
return [obj1 compare:obj2 options:NSCaseInsensitiveSearch];
}];
NSLog(@"ret:%@",ret);
printf("====end==== \n");
}
应用
查找某对象的引用
+ (instancetype)objectsWithReferencesToObject:(id)object {
static Class SwiftObjectClass = nil;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
SwiftObjectClass = NSClassFromString(@"SwiftObject");
if (!SwiftObjectClass) {
SwiftObjectClass = NSClassFromString(@"Swift._SwiftObject");
}
});
// 枚举所有可能的方式 查找引用对象, 厉害了 这可以说是万无一失啊
// 前提 获取到所有的堆区对象
NSMutableArray<FLEXObjectRef *> *instances = [NSMutableArray new];
[FLEXHeapEnumerator enumerateLiveObjectsUsingBlock:^(__unsafe_unretained id tryObject, __unsafe_unretained Class actualClass) {
// Get all the ivars on the object. Start with the class and and travel up the inheritance chain.
// Once we find a match, record it and move on to the next object. There's no reason to find multiple matches within the same object.
Class tryClass = actualClass;
while (tryClass) {
unsigned int ivarCount = 0;
Ivar *ivars = class_copyIvarList(tryClass, &ivarCount);
for (unsigned int ivarIndex = 0; ivarIndex < ivarCount; ivarIndex++) {
Ivar ivar = ivars[ivarIndex];
NSString *typeEncoding = @(ivar_getTypeEncoding(ivar) ?: "");
if (typeEncoding.flex_typeIsObjectOrClass) {
ptrdiff_t offset = ivar_getOffset(ivar);
uintptr_t *fieldPointer = (__bridge void *)tryObject + offset;
// 这里直接对比生存的类中的 对象 ivar 地址是否和 查找的对象地址一致
if (*fieldPointer == (uintptr_t)(__bridge void *)object) {
NSString *ivarName = @(ivar_getName(ivar) ?: "???");
[instances addObject:[FLEXObjectRef referencing:tryObject ivar:ivarName]];
return;
}
}
}
free(ivars);
tryClass = class_getSuperclass(tryClass);//递归类的继承树
}
}];
FLEXObjectListViewController *viewController = [[self alloc]
initWithReferences:instances
predicates:self.defaultPredicates
sectionTitles:self.defaultSectionTitles
];
viewController.title = [NSString stringWithFormat:@"Referencing %@ %p",
[FLEXRuntimeUtility safeClassNameForObject:object], object
];
return viewController;
}